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Online Appendix 

 
A Additional Results 

 
A.1 Survey Results on Diclofenac-Affected-Vulture Populations 

 
In the main text we rely on bird observations at a national level to document a decline in vulture 

populations. However, the reported observations in the Global Biodiversity Information Facility 

(GBIF) database are likely upward biased as there was likely more attention given to documenting 

and reporting vultures after it became public knowledge that their populations were in decline. 

Unfortunately, there are no large-scale repeating surveys of vulture populations as they were always 

seen as too numerous to count. One exception is a repeating population survey that took place 

along 70 roads transects during the years of 1992, 2000, 2002, 2003, and 2007. That data and survey 

methodology are reported in Prakash et al. (2007). While some survey years included additional 

road transects we only use the data from the 70 road transects that were repeatedly surveyed. In 

Figure A1, we plot the data from the repeated surveys as reported in Prakash et al. (2007), showing 

a large decline of three orders of magnitude from 1992 to 2007. 

 

A.2 Extending the Panel to Cover 1981 to 2005 

 
In the main text we use the data from 1988 to 2005 for two main reasons. First, there is an abrupt 

shift in the reporting regime in 1988 where the vital statistics start reporting vital event counts 

instead of rates. We prefer to use data reported under the same regime, as this allows to fully 

control the conversion to rates. Second, the number districts that are fully balanced from 1988 

to 2005 are 156, while there are only 104 balanced districts for the 1981 to 2005 period. When 

extending the panel to the full 1981 to 2005 period, and losing 33% percent of the districts, we 

recover similar results to those in the main text (Figure A2). Specifically, we do not observe a 

differential time trend in the years leading the collapse in vulture populations, and find that death 

rates increase in the high-vulture-suitability areas only in the years after the collapse. 
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A.3 Accounting for State-Level Temporal Trends 

 
To account for potential differential trends in reporting of vital statistics data that systematically 

change by state, we repeat the estimation in Equation (1) and include either state-linear trends, 

in addition to the zonal council-by-year fixed effects, or include state-by-year fixed effects. The 

inclusion of state-level trends potentially absorbs a large share of the signal of interest as there 

is little sub-state variation in habitat suitability overlap. Even with the inclusion of flexible time 

trends that vary by state, we recover similar patterns in Figure A3 to those in Figure 4. The 

divergence in death rates only starts after the vulture populations collapse, yet the magnitude of 

the effect is smaller. By 2000, all-cause death rates are about 0.5 or 0.3 deaths per-1,000 people 

higher in the high-vulture-suitability districts when including state-linear trends, or state-by-year 

fixed effects, respectively. 

 

A.4 Examining Heterogeneity Between Urban & Rural District Areas 

 
In Table A1, we explore the degree to which death rates respond differently to the collapse in 

vulture populations in either urban or rural areas. Because urban areas have larger populations, 

are denser, and more likely to have an animal landfill site at their outskirts, we expect that a larger 

portion of the average effect is driven by the urban areas. When we use the district-level data 

reported by urban or rural area, we find a higher average treatment effect in urban relative to rural 

areas, but the effects are not statistically different from each other. 

 

A.5 Using Habitat Suitability Model to Define Treated Districts 

 
In the main analysis, we rely on the habitat range maps, as produced by BirdLife International 

(BLI), to classify districts as either high or low suitability for the diclofenac-affected-vultures. 

One concern is that the maps heavily rely on biased samples and local knowledge which places 

more weight on populated areas. To alleviate these concerns, and to examine the sensitivity of 

the classification to the maps by BLI, we estimate our own version of a habitat suitability model 

(HSM). In general, habitat suitability modeling uses data on presence records of species along with 

a range of environmental variables in order to characterize the environmental niche that a species 

can occupy. An HSM will use observations of polar bears and conclude that cold tundras are a 
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more likely habitat than tropical forests, or that mountain goats are more likely to be found in high 

elevation areas than in the flat plains of the midwest in the United States. 

We use the well-known BIOCLIM HSM that was first developed in 1984 (Booth et al. 2014). The 

model uses data on the presence of a species, and links those records to local bioclimatic variables 

such as the elevation, temperature, and precipitation. The model uses weather data from several 

seasons on the mean, max, and min values. Overall, the standard application uses 19 such variables. 

Combining the data on the bioclimatic variables and presence records, the model constructs the 

convex hull of environmental conditions that appear to be beneficial for the presence of the species. 

Using that classification, the model then projects that convex hull back into geographic space to 

construct suitability scores. The higher the score, the more likely the area is a suitable niche for 

the species. 

We use observation records from eBird and from the Global Biodiversity Information Facility 

(GBIF) to construct the BIOCLIM suitability scores. We then take the mean level of the suitability 

scores across all three affected species, and use it to define high and low suitability dummy variables. 

We either split the suitability score into terciles, defining high suitability as the third and second 

terciles, or we define the high suitability dummy as being above the median suitability scores. 

Using these alternative definitions of the treated districts, we re-estimate the specifications in 

Equations (1), (2), and (3). We report the maps showing the classification of districts, along with 

the event study results in Figure A4, and the average treatment effects in Table A2. Across the 

two alternative treatment classification schemes, we recover similar magnitudes for the change in 

death rates following the collapse in vulture populations. This helps us to reject that our analysis 

is extremely sensitive to the exact classification of districts in either treatment or control status. 

 

A.6 Additional Water Quality Parameters 

 
Here we report additional results on water quality for biological and chemical oxygen demands 

(BOD and COD), as well as turbidity. In general, as the demand for oxygen in the water system 

increases with more substances that react with it, we see dissolved oxygen levels decline (as seen 

in Table 6), as well as increasing levels of BOD and COD. Because BOD only captures biological 

uses of oxygen, it will be below the COD level which captures both organic and inorganic uses of 

oxygen. We should expect to see both BOD and COD levels increase with a greater availability of 
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carrion in the environment. 

Turbidity is a measure of water quality that generally shows improvement in water quality as 

it goes down, however, in the case of a decline in scavengers, turbidity declines as well. This is 

because scavengers tend to increase turbidity through the act of tearing carrion flesh. As shown in 

other aquatic environments, the absence of scavengers reduces turbidity (Santori et al. 2020). 

In Table A3, we report results that are consistent with the above predictions, albeit, imprecisely 

estimated. BOD and COD values increase in the high vulture suitability district after the onset of 

diclofenac use in livestock. This effect is entirely driven by the urban district (columns 2, 3, 5, and 

6), similar to how the decline in dissolved oxygen and increase in fecal coliforms was as well (see 

Table 6). Turbidity declines in water bodies monitored in urban districts (columns 8 and 9), which 

is consistent with previous findings on declines in scavenger populations. 

 

A.7 Evaluating Changes to Healthcare Access 

 
Changes to healthcare access and utilization could also explain changes in mortality. This presents 

a threat to our identification strategy if healthcare access and utilization changed differentially 

between the high- and low-suitability districts after 1994. In Table 1, we document that the two 

groups of districts show no systematic difference in the number of hospitals and healthcare centers, 

or in the number of doctors and healthcare workers in 1991. 

Here we use data from the 2001 and 2011 census to test whether those healthcare access metrics 

changed after 1994 in the high- relative to low-vulture-suitability districts. In Table A4, we report 

estimates that show no difference between the two groups of districts. This finding holds when we 

use the same set of districts as in the main analysis, or if we use the full set of districts that appear 

in the census. This result alleviates concerns that our main finding is capturing changes to the 

healthcare infrastructure that are somehow correlated with the location and timing of the vulture 

collapse. 

 

A.8 Evaluating Changes to District Characteristics 

 
We expand on the previous analysis on healthcare access and add several other placebo outcomes 

that should not be affected by the collapse in vulture populations. For each outcome, we have at 

least one year of data before, and one year of data after the collapse. We summarize the results in 
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Figure A5, where we do not find that alternative explanations in the form of diverging employment 

or district infrastructure are consistent with the data. The overall differences are often very small 

relative to the mean of each outcome, and even when they are precisely estimated they move in 

the direction that would suggest improving health conditions in the treatment group. 

 

A.9 Sensitivity Analysis Using Jackknifing 

 
In our analysis, because we use population weights in the analysis, it is possible that one very 

large district (in terms of population) had an increase in mortality or in reporting of vital statistics 

that happened around the same time as the vulture die-offs. If such a district exists, then it will 

receive a high weight in the regression, distorting the actual effect, and leading us to incorrectly 

interpret a spurious effect as a causal one. In order to rule out that our results are driven by an 

extreme outlier, we repeat the main estimation leaving one district out of the sample each time. 

The resulting distribution of coefficients in Figure A6 is narrowly centered around the estimate we 

recover using the full sample. The results from the jackknife procedure allow us to reject that a 

single district is driving the estimation. 

We also conduct the leave-one-out exercise by excluding one state at a time. This allows us 

to evaluate whether any potential changes in the reporting of vital statistics might be driving the 

estimated effect in a manner that is not already captured by the inclusion of state-level trends 

in Figure A3. We recover a narrow distribution of the coefficients with mostly overlapping 95% 

confidence intervals. 

 

A.10 Permutation Inference Analysis 

 
As an additional robustness test we also run a permutation inference analysis. Using permutation 

inference analysis allows us to evaluate whether we are underestimating the standard errors of the 

coefficients by clustering at district level (e.g. due to spatial clustering of the standard errors), 

as well as ruling out that our research design is failing to capture any cross-sectional or temporal 

features that are responsible for the observed effect. 

We randomly re-assign the treatment across the districts and re-estimate the effect using the 

specification in Equation (2), repeating the process 1,000 times. We either fully randomize the 

treatment dummy across districts and years (full), maintain the same temporal structure but ran- 
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domly assign districts as either treated after 1994 or not (block), or randomly assign the years that 

are flagged as treated within the districts that are truly part of the treatment group (within). We 

plot the permutation distributions in Figure A8, where each one of the distributions is centered 

around zero. More importantly, the estimated effect from the non-permutation sample is in far 

right tail of each distribution, resulting in an exact p-value well below 1%. 
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Figure A1: Vulture Counts From Repeated Surveys Along Road Transects 
 

 

 

 

Notes: Each dot is the sum of surveyed vultures, in log scale, along the same 70 road transects for the three 

diclofenac-affected-species. Data are reproduced from Prakash et al. (2007). 
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Figure A2: All-Cause Death Rates DD Estimation Results With Earlier Years 
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Notes: Estimation results from Equation (1). Comparing the third and second terciles to the first tercile of vulture 

habitat overlap. Expanding the sample to 1981, while still using a balanced sample, lowers the number of districts 156 
to 104. The regression includes district and zonal council-by-year fixed effects. Observations are population-weighted. 

Standard errors are clustered at the district level. 
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Figure A3: All-Cause Death Rates DD Estimation Results With State-Level Trends 

(a) State-Linear Time Trends (b) State-by-Year Fixed Effects 
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Notes: Estimation results from Equation (1). Comparing the third and second terciles to the first tercile of vulture 
habitat overlap. All regression include district fixed effects. The regression in (a) includes zonal council-by-year fixed 

effects and state-level linear time trends, and the regression in (b) includes state-by-year fixed effects. Observations 
are population-weighted. Standard errors are clustered at the district level. 
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Figure A4: Classifying Treated Districts Using the BIOCLIM Habitat Suitability Model 

Suitability Score Terciles III & II 
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Notes: The treatment classification uses predicted suitability scores for the diclofenac-affected-vultures from the 

BIOCLIM habitat suitability model. We either split the suitability score into terciles and define treated districts as 
the third and second terciles (a and c), or split districts as above or below the median suitability score, and define 

treated districts as those above the median (b and d). 
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Figure A5: Summary of Placebo Results 

 
DD Results for Observable Characteristics of Districts 
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Notes: Estimation results for the specification in Equation (2). Each regression includes district and zonal council- 

by-year fixed effects. The sample includes all the districts in the balanced sample reported in the main analysis. 
Observations are population-weighted. Standard errors are clustered at the district level. 
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Figure A6: Distribution of Leave-One-District Out DD Estimation Results 
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Notes: The distribution of coefficients from repeating the estimation in Equation (2) when leaving one district out 

each time. The vertical line shows the coefficient from the full balanced sample. 
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Excluding Andhra Pradesh 

Excluding Gujarat 
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All States 

Excluding Nagaland 

Excluding Mizoram 

Excluding Manipur 

Excluding Pondicherry 

Excluding Orissa 

Excluding Jammu And Kashmir 

Excluding Punjab 

Excluding Karnataka 

Excluding Rajasthan 

Excluding Tamil Nadu 

Figure A7: Distribution of Leave-One-State Out DD Estimation Results 

 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1  1.1 1.2 1.3 1.4 1.5 
Coefficients and 95% CIs for the Effect of 

High Vulture Suitability Following the Onset of Diclofenac Use 
 

Notes: The distribution of coefficients and 95% CIs from repeating the estimation in Equation (2) when leaving one 

state out each time. The maroon line shows the coefficient and 95% CI from the full balanced sample. 
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Coefficient from the 
non-bootstrap sample 
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Figure A8: Permutation Inference DD Estimation Results 

(a) Full (b) Block (c) Within 
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Table A1. 

 All-Cause Death Rate, per-1,000 People (Y = 10.7)  

Panel A. District Urban Areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: Estimation results for the specification in Equation (2). 

The estimation is comapring high-vulture-suitability (HVS) to low- 

vulture-suitability, after the onset of diclofenac use (post-1994), rel- 
ative to years prior to the patent expiration. Reported mean of 10.7 

deaths per-1,000 people is for the pre-treatment period of 1988 to 
1993, obtained from the UN Population Division Sample includes 
balanced district level data from 1988 to 2005. All regressions in- 
clude district fixed effects. Observations are population-weighted. 

Standard errors are clustered at the district level. 

 (1) (2) (3) (4) 

HVS×Post-1994 0.88 0.84 0.95 0.91 
 (0.19) (0.18) (0.17) (0.17) 

R2 0.703 0.712 0.728 0.734 

N 5,562 5,562 5,562 5,562 

Clusters 156 156 156 156 

 
Panel B. District Rural Areas 

 (1) (2) (3) (4) 

HVS×Post-1994 0.76 0.71 0.86 0.79 
 (0.17) (0.17) (0.16) (0.16) 

R2 0.715 0.723 0.735 0.742 

N 5,670 5,670 5,670 5,670 

Clusters 162 162 162 162 

Year FE 

Zonal Council-by-Year FE 

X X  
X 

 
X 

Weather Controls  X  X 
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Table A2. 

Results for All-Cause Death Rate Using BIOCLIM Classifications (Y = 10.7) 

Panel A. High & Medium Suitability Score Terciles 

 

 

 

 

 

 

 

 

R2 0.734  0.741  0.761  0.767 

N 2,754 2,754 2,466 2,466 

Clusters 153 153 137 137 

 

Panel B. Above Median Suitability Score 
 (1) (2) (3) (4) 

HVS×Livestock×Post-1994   0.908 0.885 
   (0.335) (0.329)

HVS×Diclofenac 0.622 0.553 -0.129 -0.143 
 (0.184) (0.178) (0.258) (0.260)

Livestock×Post-1994   -0.034 -0.035 
   (0.220) (0.214)

R2 0.733  0.741  0.761  0.768 

N 2,754 2,754 2,466 2,466 

Clusters 153 153 137 137 

Weather Controls  X  X 

Notes:  Estimation Results for the specification in Equations (2) and 

(3). The treatment classification uses predicted suitability scores for the 
diclofenac-affected-vultures from the BIOCLIM habitat suitability model. 

We either split the suitability score into terciles and define treated districts 
as the third and second terciles (Panel A), or split districts as above or be- 

low the median suitability score, and define treated districts as those above 

the median (Panel B). Sample includes balanced district data, combining 
urban and rural areas, from 1988 to 2005. Reported mean of 10.7 deaths 

per-1,000 people is for the pre-treatment period of 1988 to 1993, obtained 
from the UN Population Division All regressions include district and zonal 

council-by-year fixed effects. Observations are population-weighted. Stan- 
dard errors are clustered at the district level. 

 (1) (2) (3) (4) 

HVS×Livestock×Post-1994   0.830 0.751 
   (0.343) (0.336)

HVS×Diclofenac 0.622 0.539 -0.008 0.001 
 (0.189) (0.183) (0.251) (0.252)

Livestock×Post-1994   -0.208 -0.173 
   (0.266) (0.258)
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Table A3. 

District Water Quality DD & DDD Estimates 
 

 

 

 

U&R U  U&R U  U&R U  

 (1) (2)  (3)  (4) (5)  (6)  (7) (8)  
 

(9) 

HVS×Urban×Diclofenac  1.5     11.4     -7.2   

  (1.1)     (7.5)     (6.4)   

HVS×Diclofenac 0.7 0.2  1.8  1.8 -2.2  9.6  -0.7 1.4  -6.0 
 (0.5) (0.5)  (1.1)  (3.1) (2.1)  (7.3)  (4.0) (4.4)  (6.3) 

Urban×Diclofenac  -0.6     -6.9     -0.2   

  (0.7)     (6.6)     (4.3)   

Y ≤1993 4.01 4.01  5.03  25.32 25.32 28.61 36.44 36.44 40.30 

R2 0.74 0.74 0.75 0.71 0.71 0.75 0.79 0.79 0.78 

N 4,339 4,339 2,062 4,146 4,146 1,967 3,600 3,600 1,671

Clusters 221 221 140 217 217 135 208 208 129 

Notes: Estimation results for the specification in Equation (2). Comapring the third and second tercile 
of diclofence affected vultures to first tercile, before and after the onset of diclofenac use. Each regression 
includes district-by-area-by-type fixed effects where area is either urban or rural, and type is the water 

body type (well, river, etc.). In addition, each regression includes year fixed effects. Sample consists 
of district-level data for census-urban (U) and rural (R) areas, from 1988 to 2005. Observations are 

population-weighted. Standard errors are clustered at the district level. 

Biological Chemical 
 

Oxygen Oxygen Turbidity 

Demand Demand  
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Table A4. 

Estimation Results for Healthcare Access 

Main Sample Census Sample 
 

 
Per-Capita 

Hospitals & 

Health Centers 

 
Per-Capita 

Doctors & 

Health Workers 

 
Per-Capita 

Hospitals & 

Health Centers 

 
Per-Capita 

Doctors & 

Health Workers 

(1)  (2)  (3)  
 

(4) 

HVS×Post-1994 0.07  1.83  -0.34  2.73 
 (0.22)  (2.29)  (0.21)  (2.34) 
 

 

Y 1.79  18.03  1.80  21.37 

R2 0.772  0.728  0.702  0.589 

N 445 445 964 964 

Clusters 153 153 337 337 

Notes: Estimation results for the specification in Equation (2). The sample uses data fron the Indian 
census on the number of hospitals, health centers, doctors, and health workers in 1991, 2001, and 

2011, and converts them to per-capita rates. The results in columns 1 and 2 are for the districts 

that have fully balanced death rate data and are used in the main analysis. The results in columns 
3 and 4 are for all the balanced districts in the census data. Each regression includes district and 

zonal council-by-year fixed effects. Observations are population-weighted. The reported mean for the 
outcome is the popualtion-weighted mean. Standard errors are clustered at the district level. 
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B Diclofenac Use Onset 

 
In her book chapter discussing the decline of Vultures in India, Subramanian (2015) writes that 

“Diclofenac had been restricted as the intellectual property of pharmaceutical titan Novartis, but 

when the patent expired around 1990, India’s generic drug industry, coupled with a thriving black 

market, flooded the country with cheap highly potent diclofenac.” (p. 178). To better establish 

the timeline of when diclofenac use became prevalent in the livestock sector in India, we looked 

for evidence on the exact timing of the expiration of the patent. In Figure B1, we include three 

annotated extracts from Federal Drug Administration (FDA) records and documentation. Com- 

bined, these show that there was a change in 1993 pertaining to the patent Novartis had regarding 

diclofenac, and that the code associated with that change is associated with approval for a generic 

version of the drug. 

Recall survey were conducted by Cuthbert et al. (2014) in 2004 with 29 veterinary clinics in 

India. Among the questions asked, veterinary professionals were asked about when they began offer- 

ing certain non-steroidal, anti-inflammatory drugs to livestock farmers. Summary of the responses 

reported a median onset year for diclofenac of 1994. 
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Figure B1: FDA Documents Regarding Diclofenac & Generic Drug Approval 

(a) Change to Novartis’ Diclofenac Patent in 1993 
 

(b) Change Code CRLD 

 

(c) Documentation Regarding RLD Changes 

 

Source:  Panels (a) and (b) were obtained from “APPROVED DRUG PRODUCTS WITH THER- 
APEUTIC EQUIVALENCE EVALUATIONS,” 40th Edition. This document can be downloaded from: 

https://www.fda.gov/media/72973/download (Accessed on: 12/15/2020). Panel (c) was obtained from “Draft Guid- 
ance for Industry: Referencing Approved Drug Products in ANDA Submissions”. This document can be downloaded 

from: https://www.fda.gov/media/102266/download (Accessed on: 12/15/2020). 
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C Data 

 
C.1 BirdLife International Species Distribution Maps 

 
We requested access to the geodatabase with all the digitized maps for all bird species maintained 

by BirdLife International (BLI). Access is provided for non-commercial uses.26 The data include 

information about whether the species are extant or extinct, along with discrete categories regarding 

the likelihood of the two. The data also include information on whether the species is native or not, 

and whether their presence is yearly, during the breeding season, or other form of seasonality.27
 

We extract the maps for all vulture species in India. We consider the areas where they are labeled 

as extant, probably extant, possibly extant, and possibly extinct. We include ranges classified as 

possibly extinct as those still reflect potential presence in the past thirty years. For each district, 

we calculate the overlap of the habitat area, and repeat this for each species. This provides us with 

three overlap value for the three diclofenac-affected vulture species. We calculate the mean value 

of those overlap scores, and use those to assign the suitability category. 

 

C.2 Examining the Reporting Accuracy of the CRS Data 

 
One known limitation of CRS data in India is that many vital statistics events go unrecorded, 

and as a result, the CRS under-reports the true magnitude of mortality. Although there is no 

alternative to the CRS as far as district-level data is concerned, at the national level a commonly 

used source of information is the Sample Registration System, which samples less than one percent 

of the population, but is designed to recover a nationally representative sample (Rao and Gupta 

2020). 

We obtain the raw SRS records in order to compare the gap in reporting. While we do find 

that at the national level, the CRS underestimates mortality rates by about a factor of two relative 

to the SRS, when controlling for state and zonal council-by-year fixed effects, both sources of data 

allow us to recover similar trends in mortality rates. Specifically, we compare the CRS data to the 

SRS data in order to evaluate if underreporting of mortality in the CRS data is introducing bias in 

the trends in addition to underestimating the magnitude. The data in the SRS are reported at the 

26 Application can be filled out at: http://datazone.birdlife.org/species/requestdis 
27 BLI provides a summary of these categories here: http://datazone.birdlife.org/species/spcdistPOS 
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state level. To compare the CRS and SRS, we take a population weighted mean of the district- or 

state-level data, respectively, to obtain a national-level estimate for the all-cause death rate. We 

plot the levels of all-cause death rates, by source of data, by year, in Figure C1. 

There is a clear difference in levels (Figure C1, dashed lines) between the all-cause death rate 

in the CRS relative to the SRS data. The SRS death rate is nearly double than the CRS reported 

death rate. However, when residualizing the death rates on a set of unit and time fixed effects 

(Figure C1, reported in the solid lines), the two death rates follow similar trends.28
 

We interpret the agreement between the residualized levels in Figure C1 as evidence that con- 

ditional on fixed effects, the CRS data manage to capture similar trends to those in the SRS data. 

In addition, the results from this comparison also highlight that the correct baseline level that we 

should use when comparing the relative change in mortality is nearly twice as large, reducing the 

relative size of the effect when using the CRS mean level by half. 

The fixed effect specifications we describe in Section 5 compare changes over time and are robust 

to several forms of under-reporting. This allows us to recover the level differences in mortality. 

Interpreting our level estimates relative to a baseline level of mortality, using the mean mortality 

reported in the CRS data is undesirable because it would over-estimate the size of relative changes. 

Consequently, in the interpretation of the analysis, we interpret the magnitude of the coefficients 

relative to the mean level from the SRS data as reported by the UN Population Division, which 

reflects the national-level death rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
28 Specifically, we include district-by-area or state-by-area, for urban and rural areas, fixed effects, as well as year 

fixed effects. 
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Figure C1: Comparing All-Cause Death Rates in CRS & SRS Data 
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Notes: Data from the CRS and SRS databases on all-cause death rates. District and state level data are aggregated 
to the national level using population weights. Death rates are residualized (solid lines) on region (district or state), 

as well as zonal council-by-year fixed effects. 


